ASSIGNMENT NO

TITLE: To Implement a Stack and Queue Abstract Data Types using Array

SYSTEM: PC with ‘Turbo C’.

INPUT-OUTPUT REQUIREMENTS:

INPUT: Data for stack

OUTPUT: Result of various operations on Stack and Queue.

THEORY:

DATASTRUCTURE:

Data structure is a method of representation of logical relationships between individual data elements related to the solution of a given problem. Data structures the most convenient way to handle data of different data types, including abstract data type for a known problem.

AIM:

To perform operations on Stack using array representation

STACK:

A stack is a linear list in which insertions (also called additions and pushes) and removing (also called deletions and pops) take place at the same end. This end is known as top. The other end of the list is called bottom.

A stack is a dynamic and constantly changing object. Since the elements are inserted and deleted at the same end. It is “Last In First Out” [LIFO] data structure.

STACK ADT:

A stack is a container of objects that are inserted and removed according to LIFO principle.

OPERATIONS ON STACKS:

There are two main operations.

(1) Push (2) Pop

PUSH:

The procedure of inserting a new element on the top of the stack is known as the push operation. After every push operation the top is incremented by 1 and a new element rests at the top. When the array is full and this condition is known as stack overflow. In such case, no element is inserted.

POP:

The process removing an element from the top of the stack is called pop operation. After every pop operation, top is decremented by 1. If there is no element in the stack, then the stack is called as empty stack or stack underflow. In such case the pop operation cannot be applicable.

CLASS TEMPLATES:

Class templates can be defined as a powerful mechanism, which allows us to provide one data structure declaration that can be applied to many different types. Writing the generic codes and making use of generic code interface for implementing different operations.

ALOGORITHM:

i. Define a class by name stack with member functions push, pop, display, isempty, isfull, constructor and destructor functions

CONSTRUCTOR FUNCTION: [STACK]

I. top = -1

II. size = x

III. stackptr= new T[size]

DESTRUCTOR FUNCTION: [~STACK]

Delete the stackptr.

DISPLAY:

1. Initialize “ i “with top.

2. If i>0, then print stackptr[i] and decrement i with one and once again go to step 2.

3. Else stop.

ISEMPTY:

1. If top<0, then return one.

2. Else return zero.

ISFULL:

1. If top>=size-1, then return 1.

2. Else return zero.

PUSH:

1. If stack is not full, then increment top and stackptr[top]=x.

2. Else, print that stack is overflow and push is not possible.

POP:

1. If stack is not empty, then x=stackptr [top].

2. Decrement top and return x.

3. Else, print that stack is underflow and so, pop is not possible

PROGRAM:

/*STACK PUSH() AND POP() IMPLEMENTATION USING ARRAYS*/

#include <stdio.h>

#include<conio.h>

#define MAX 5

int top, status;

/*PUSH FUNCTION*/

void push (int stack[], int item)

{   if (top == (MAX-1))

status = 0;

    else

    {   status = 1;

++top;

stack [top] = item;

    }

}

/*POP FUNCTION*/

int pop (int stack[])

{  

int ret;

    if (top == -1)

    {   ret = 0;

status = 0;

    }

    else

    {   status = 1;

ret = stack [top];

--top;

    }

return ret;

}

/*FUNCTION TO DISPLAY STACK*/

void display (int stack[])

{   int i;

    printf ("\nThe Stack is: ");

    if (top == -1)

printf ("empty");

    else

    {   for (i=top; i>=0; --i)

  printf ("\n--------\n|%3d   |\n--------",stack[i]);

    }

    printf ("\n");

}

/*MAIN PROGRAM*/

void main()

{  

int stack [MAX], item;

    int ch;

    clrscr ();

    top = -1;

    do

    {  do

       {   printf ("\NMAIN MENU");

  printf ("\n1.PUSH (Insert) in the Stack");

  printf ("\n2.POP  (Delete) from the Stack");

  printf ("\n3.Exit (End the Execution)");

  printf ("\nEnter Your Choice: ");

  scanf  ("%d", &ch);

  if (ch<1 || ch>3)

      printf ("\nInvalid Choice, Please try again");

}while (ch<1 || ch>3);

       switch (ch)

       {case 1:

printf ("\nEnter the Element to be pushed : ");

scanf  ("%d", &item);

printf (" %d", item);

push (stack, item);

if (status)

{   printf ("\nAfter Pushing ");

   display (stack);

   if (top == (MAX-1))

printf ("\nThe Stack is Full");

}

else

   printf ("\nStack overflow on Push");

break;

       case 2:

item = pop (stack);

if (status)

{    printf ("\nThe Popped item is %d.  After Popping: ");

    display (stack);

}

else

    printf ("\nStack underflow on Pop");

break;

       default:

printf ("\nEND OF EXECUTION");

       }

    }while (ch != 3);

getch();

}

AIM:

To perform operations on queues using array representation

DATA STRUCTURE:

Data structure is a method of representation of logical relationships between individual data elements related to the solution of a given problem. Data structure is the most convenient way to handle data of different data types, including abstract data type for a known problem.

QUEUE ADT:

A queue is an ordered collection of homogeneous data elements, insertion and deletion operation takes place at the extreme ends. It follows the rule first-in-first-out [FIFO]

OPERATIONS ON QUEUE:

The operations that can be performed on queue are insertion and deletion. The elements are inserted at the rear end and deleted at the front end.  


[image: image60.emf]
Here the queue contains 4 elements P,Q,R,s.

The elements ‘ P ‘ is at the front end and the element ‘ S ‘ is at the rear end.


[image: image2]
Here the element ‘P ‘has been deleted from the queue. Now the front points to the ‘Q‘and the ‘Q’ is the first element in the queue.


[image: image3]
Here V and G are inserted into the queue. First element ‘V’ is inserted through rear end and then the element G is inserted through the rear end of the queue. As far as the removal operation is concerned, V is removed before G.

Insertion and deletion operations depend up to the status of the queue. Insertion is possible only when the queue contains elements less than the capacity it can hold. Deletion is possible only when the queue contains at least one element.

CLASS TEMPLATES:

Class templates can be defined as a powerful mechanism, which allows us to provide one data structure declaration that can be applied to many different types.

ALOGORITHM:

Define a class by name queue with member functions enqueue, dequeue, isempty,  isfull, display, constructor and destructor function. 

CONSTRUCTOR FUNCTION:

• front = rear = -1

• size = x

• qptr = new T[size]

DESTRUCTOR FUNCTION: [~ QUEUE]

• delete the qptr

DISPLAY:

• Initialize ‘i’ with front

• If i < = rear, then print qptr[i] and then increament the i value by 1

• Else stop

ISEMPTY: 

• If front = rear, then return 1

• Else return 0

ISFULL:

• If rear > = (size-1), then return 1

• Else return 0

ENQUEUE:

• If queue is not full, then increment rear by 1 and qptr[rear] = x

• If front = = -1, then front = 0 Else, print that insertion is not possible

DEQUEUE:

• If queue is not empty, then increment front by 1 and x = qptr[front]

(1) If front > rear, then front = rear = -1 and return x

• Else print queue is not empty, deletion is not possible and return 0.

PROGRAM:

#include "stdafx.h"

#include "iostream"

using namespace std;

#define MAX 10

class Queue

{

private:

       int arr[MAX];

       int front, rear;

public:

      Queue()

      {

            front = -1;

            rear  = -1;

      }

       void Add(int item)

      {

             if(rear == MAX-1)

            {

                  cout<<endl<< "Queue is full";

                   return;

            }

            rear++;

            arr[rear] = item;

             if( front == -1 )

                  front = 0;

      }

       int Delete()

      {

             if(front == -1)

            {

                  cout<<endl<< "Queue is empty";

                   return NULL;

            }

        int data = arr[front];

             if( front == rear)

                  front = rear = -1;

             else

                  front++;

             return data;

      }

};

int main()

{

      Queue q;

      q.Add(1);

      q.Add(2);

      q.Add(3);

       int i = q.Delete();

      cout<<endl<< "item="" deleted="<<i<<<span class=" hiddenspellerror"="" pre="">endl;

      i = q.Delete();

      cout<<endl<< "Item deleted = "<<i<<endl;

       return 0;

}

/*

OUTPUT

----------------

Item deleted = 1

Item deleted = 2 */

ASSIGNMENT NO

TITLE: Implement Singly Linked List and perform following operations  


1. Create 2. Insert 3. Delete 4. Display

SYSTEM: PC with ‘Turbo C’.

INPUT-OUTPUT REQUIREMENTS:

INPUT: Data for nodes

OUTPUT: Result of various operations on Singly Linked List

THEORY:

SINGLY LINKED LIST:

A list that displays the relationship of adjacency between elements is said to be linear list. It also can be defined to consist of an ordered set of elements. Linear linked list is the most commonly used data structure of linked lists. A simple way to represent a linear list is to expand each node to contain a link or pointer to the next node.


[image: image4]
Node Structure


[image: image5]
In the figure above, the variable Head contains an address or pointer that gives the location of the first node of the list. The last node of the list does not have a successor node, and consequently, no actual address is stored in the pointer field. In such case, a null value is stored as the address. The arrow emanating from the link field of a particular node indicates its successor node in the structure. The basic operations of linear linked list include create, insert, delete.

Insert:

Insert First:

The following figures show the procedure step by step.

Step1. Create a new node that is pointed by pointer new. See figure.


[image: image6]
Step2. Link the new node to the first node of the linked list. See figure


[image: image7]
Sep3. Set the pointer head to the new node. See figure


[image: image8]
Insert last:

The following figures show the procedure step by step.

Step1. Create the new node. Initializing pointer temp points to the first node of the list, increment temp and stop the increment when we got the next field of temp is NULL pointer. See figure


[image: image9]
temp = temp->next;


[image: image10]
Here temp->next=NULL

Step2. Link the node that is pointed by pointer temp to the new node. See figure


[image: image11]
Insert after any node:

The following figures show the procedure step by step.

Step1. Create the new node. Initializing pointer temp points to the first node of the list, increment temp and stop the increment when we got the node after which you want to insert. See figure A.


[image: image12]
A)

temp = temp->next;

temp->data=data after which you want insert.

Step 2: Change the link field of new with address of next node of temp node See figure B.


[image: image13]
B)

NEW->next=temp->next;

Step 2: Change the link field of temp with address of new node See figure C.


[image: image14]
C)

temp->next=NEW;

Insert before any node:

The following figures show the procedure step by step.

Step1: Create the new node. Initializing pointer temp points to the first node & temp1 for finding previous node of the temp, first save temp in temp1 and then  ncrement temp and stop the increment when we got the node before which you want to insert. See figure A.


[image: image15]
A)

temp1=temp;

temp = temp->next;

Step 2: Change the link field of new with address of that node before which

you want insert See figure B.


[image: image16]
B)

NEW->next=temp;

Step 2: Change the link field of temp1 with address of new node See figure C.


[image: image17]
C)

temp1->next=NEW;

Delete:

Delete first:

The following figures show the procedure step by step.

Step1. Initialize the pointer temp, pointing to the first node of the list. See Figure


[image: image18]
Step2. Move the pointer head to the second node of the list. See Figure


[image: image19]
Step3. Remove the node that is pointed by the pointer temp. See Figure


[image: image20]
Delete last:

The following figures show the procedure step by step.

Step1. Initialize pointer temp points to the first node of the list, while the pointer prev has a value of null. See Figure


[image: image21]
Step 2.Travesing the entire list until the pointer temp points to the last node of the list. See Figure


[image: image22]
Step 3 Assign the LINK field of the node that is pointed by pointer prev to NULL. See Figure


[image: image23]
Step 4 Remove the last node that is pointed by pointer temp. See Figure


[image: image24]
Delete Any Node:

The following figures show the procedure step by step.

Step1: Initializing pointer temp points to the first node of the list, while the pointer prev has a value of null. See Figure


[image: image25]
Step2: Traversing the entire list until the pointer temp points to the node that contains value of x, and prev points to the previous node. See Figure


[image: image26]
Step3. Link the node pointed by pointer prev to the node after the temp’s node. See Figure


[image: image27]
Step4. Remove the node pointed by temp. See Figure


[image: image28]
ALGORITHM:

1. Create function:

Step1: Start

Step2: Allocate memory for new node using new operator.

Step3: If memory allocation is 'NULL' then print message as "Unable to allocate memory".

Step4: Otherwise take data from user & store it in data field of new node.

Step5: Store "NULL" in link field of new node.

Step6: If list is empty then insert new node as first node otherwise find the last node and insert new node by storing the address of new node in the link field of last node.

Step7: Stop.

2. Insert function:

Step1: Start

Step2: Print menu for insert element in SLL as bellow

1. Insert node at beginning.

2. Insert node at last.

3. Insert node at before any node.

4. Insert node at after any node.

Step3: Take choice from user.

Step4: If choice is 1 then call insert_beginning function.

Step5: If choice is 2 then call insert_last function

Step6: If choice is 3 then call insert_before function.

Step7: If choice is 3 then call insert_after function.

Step8: If choice is not match then print massage as "wrong choice".

Step9: Stop.

3. Insert beginning function:

Step1: Start

Step2: Allocate memory for new node using new operator.

Step3: If memory allocation is 'NULL' then print message as "Unable to allocate memory".

Step4: Otherwise take data from user & store it in data field of new node. Step5: Store "NULL" in link field of new node.

Step6: Insert new node by coping contains of head node in link field of new node and change head by address of new node.

Step7: Stop.

4. Insert last function:

Step1: Start

Step2: Allocate memory for new node using new operator.

Step3: If memory allocation is 'NULL' then print message as "Unable to allocate memory".

Step4: Otherwise take data from user & store it in data field of new node. Step5: Store "NULL" in link field of new node.

Step6: If list is empty then insert new node as first node otherwise find the last node and insert new node by storing the address of new node in the link field of last node.

Step7: Stop.

5. Insert before function:

Step1: Start

Step2: Allocate memory for new node using new operator.

Step3: If memory allocation is 'NULL' then print message as "Unable to allocate memory". 

Step4: Otherwise take data from user & store it in data field of new node.

Step5: Store "NULL" in link field of new node.

Step6: Take data of node before which you want to insert node from user & find that node in SLL using while loop.

Step7:Give link between new node & previous node of found node and link between new node and found node in SLL.

Step8: Stop.

6. Insert after function:

Step1: Start

Step2: Allocate memory for new node using new operator.

Step3: If memory allocation is 'NULL' then print message as "Unable to Allocate memory".

Step4: Otherwise take data from user & store it in data field of new node. 

Step5: Store "NULL" in link field of new node.

Step6: Take data of node after which you want to insert node from user & find that node in SLL using while loop.

Step7: Give link between new node & next node of found node and link between new node and found node in SLL.

Step6: Stop.

7. Display function:

step1: Start

step2: Take temp pointer for traveling the list.

step3: Using while loop print element of SLL which are in data field.

step4: Stop

8. Delete function:

Step1: Start

Step2: Print menu for delete element in SLL as bellow

1. Delete first node

2. Delete middle node

3. Delete last node.

Step3: Take choice from user.

Step4: If choice is 1 then call deletefirst function.

Step5: If choice is 2 then call deletemiddle function

Step6: If choice is 3 then call deletelast function.

Step7: If choice is not match then print massage as "wrong choice".

Step8: Stop.

9. Delete first function:

Step1: Start

Step2: Store the address of first node in temp pointer and then change head by address of next node.

Step3: Delete first node by using delete operator.

Step5: Stop.

10. Delete middle function:

Step1: Start

Step2: Take data from user which node you want to delete.

Step3: Find that node using while loop.

Step3: Change the link field of previous node of found node by address of next node of found node.

Step4: Delete that node by using delete operator.

Step5: Stop. 

11. Delete last function:

Step1: Start

Step2: Find the last node and change the link field of previous node by NULL

Step3: Then delete last node using delete operator.

Step5: Stop.

12. Main function:

Step 1: Start.

Step 2: Initialize a variable & head pointer.

Step3: Print menu as bellow & enter your choice

1. Create

2. Insert

3. Display

4. Delete.

Step4: If choice is 1 then call create function.

Step5: If choice is 2 then call insert function.

Step6: If choice is 3 then call display function.

Step7: If choice is 4 then call delete function.

Step8: If do you want continue then enter 'Y' else enter 'N'.

Step9: Stop. 

PROGRAM:

#include "stdafx.h"

#include "iostream"

using namespace std;

class LinkList

{

private:

      struct Node

      {

        int data;

        Node* link;

      }*p;

public:

      LinkList();

      ~LinkList();


   void Print();         // Prints the contents of linkedlist

       void Append(int num); // Adds a new node at the end of the linkedlist

       void Delete(int num); // Deletes the specified node from the linkedlist


   void AddatBeg(int num);// Adds a new node at the beginning of the linkedlist

       void AddAfter(int c, int num); // Adds a new node after specified number of nodes

       int Count();          // Counts number of nodes present in the linkedlist

};

LinkList::LinkList()

{

  p = NULL;

}

LinkList::~LinkList()

{

  if (p == NULL)

        return;

  Node* tmp;

  while(p != NULL)

  {

       tmp = p->link ;

     delete p;

       p = tmp;

  }

}

// Prints the contents of linkedlist

void LinkList::Print()

{

  if (p == NULL)

  {

        cout<< "EMPTY";

        return;

  }

  //Traverse

  Node* tmp = p;

  while(tmp != NULL)

  {

       cout<data<<endl;

       tmp = tmp->link ;

  }

}

// Adds a new node at the end of the linkedlist

void LinkList::Append(int num)

{

      Node *newNode;

      newNode = new Node;

      newNode->data = num;

      newNode->link = NULL;

       if(p == NULL)

      {

       //create first node

         p = newNode;

      }

       else

      {

             //Traverse

            Node *tmp = p;

             while(tmp->link != NULL)

            {

                  tmp = tmp->link;

            }

             //add node to the end

        tmp->link = newNode;

      }

}

// Deletes the specified node from the linkedlist

void LinkList::Delete( int num )

{

   Node *tmp;

   tmp = p;

   //If node to be delete is first node

   if( tmp->data == num )

   {

      p = tmp->link;

      delete tmp;

      return;

   }

   // traverse list till the last but one node is reached

   Node *tmp2 = tmp;

   while( tmp!=NULL )

   {

      if( tmp->data == num )

      {

         tmp2->link = tmp->link;

         delete tmp;

         return;

      }

      tmp2 = tmp;

      tmp = tmp->link;

   }

   cout<< "\nElement "<<num<<" not Found." ;

}

// Adds a new node at the beginning of the linkedlist

void LinkList::AddatBeg(int num)

{

      Node *tmp;

       //add new node

      tmp = new Node;

      tmp->data = num;

      tmp->link = p;

      p = tmp;

}

//Adds a new node after specified number of nodes

void LinkList::AddAfter(int c, int num)

{

      Node *tmp;

      Node *tmp2;

       int i;

       //Skip to the desired portion

       for( i = 0, tmp = p; i

      {

            tmp = tmp->link;

             //if end of linked list is encountered

             if(tmp == NULL)

            {

                  cout<<endl<< "There are less than "<<c<<" elements" ;

                   return;

            }

      }

       //insert new node

      tmp2 = new Node;

      tmp2->data = num;

      tmp2->link = tmp->link;

      tmp->link = tmp2;

}

// Counts number of nodes present in the linkedlist

int LinkList::Count()

{

      Node *tmp;

       int c = 0;

       //Traverse the entire Linked List

       for (tmp = p; tmp != NULL; tmp = tmp->link)

            c++;

       return (c);

}

void main()

{

      LinkList* pobj = new LinkList();

      pobj->Append(11);

      pobj->Append(22);

      pobj->Append(33);

      pobj->Delete(33);

      pobj->AddatBeg(44);

      pobj->AddAfter(1, 55);

      pobj->Print();

      cout<<endl<< "no.="" of="" elements="" in="" linked="" list="<<pobj->Count()<<<span class=" hiddenspellerror"="" pre="">endl;

       delete pobj;

}

/*

OUTPUT

----------------

44

11

55

22

No. of elements in linked list = 4

*/

ASSIGNMENT NO

TITLE: Implement Circular Double Linked List.

SYSTEM: PC with ‘Turbo C’.

INPUT-OUTPUT REQUIREMENTS:

INPUT: Data for nodes

OUTPUT: Result of various operations on Doubly Circular Linked List.

ALGORITHM:

Insert Function:

Step 1: Start.

Step 2: Take data from user & create new node.

Step 3: If memory not allocated, print “Unable to allocate”.

Step 4: If front & rear both are ‘NULL’, assign front & rear to newly created node.

Step 5: Else store address of new node in next field of rear; assign rear to new node and store address of the front in new node.

Step 6: Ask if user wants to insert more node.

Step 7: If yes, repeat 2 to 6.

Step 8: Stop.

Delete Function:

Step 1: Start.

Step 2: Check if circular queue is empty or not.

Step 3: If yes, print “No element to delete”.

Step 4: Else check if front & rear are equal; if yes, only one node is present.

Step 5: Delete that node.

Step 6: If front & rear are not equal, take temporary variable & assign it to front, increment front; rear points to next of front.

Step 7: Delete temp.

Step 8: Repeat the procedure if user wants.

Step 9: Stop.

Display Function:

Step 1: Start.

Step 2: Check if front is ‘NULL’.

Step 3: Print queue is empty.

Step 4: If not, take front in temporary variable & scan the queue using while loop.

Step 5: Repeat previous step until address of temp is not equal to front.

Step 6: Print all elements.

Step 7: Stop.

Main Function:

Step 1: Start.

Step 2: Declare necessary variables.

Step 3: Print menu as below & take choice from user:

1. Insert

2. Delete

3. Display

4. Exit

Step 4: If choice is 1, call insert function.

Step 5: If choice is 2, call delete function.

Step 6: If choice is 3, call display function.

Step 7: If choice is 4, exit.

Step 8: If user wants to continue, go to step 3.

Step 9: Stop. 

PROGRAM:

#include<iostream.h>

#include<conio.h>

void insert();

void dele();

void disp();

struct node

{


int data;


struct node *next;


struct node *prev;

}*head,*temp;

void main()

{


int ch;


char ans;


clrscr();


do


{



cout<<"1. Insert element\n";



cout<<"2. Delete element\n";



cout<<"3. Display\n";



cout<<"\nEnter your choice\n";



cin>>ch;



switch(ch)



{




case 1: insert();





break;




case 2: dele();





break;




case 3: disp();





break;




default: cout<<"\nInvalid choice\n";





break;



}



cout<<"\nDo you want to continue...??? (y=Yes or n=not)\n";



cin>>ans;


}while(ans=='y' || ans=='Y');

}

void insert()

{


struct node *new1;


new1=new node;


temp=head;


cout<<"Enter data";


cin>>new1->data;


new1->next=NULL;


new1->prev=NULL;


if(head==NULL)


{



head=new1;



head->next=head;



head->prev=head;


}


else


{



while(temp->next!=head)



{




temp=temp->next;



}



temp->next=new1;



new1->next=head;



new1->prev=temp;



head->prev=new1;


}

}

void insertion()

{


while(temp->next!=head)


{



if(temp->data==no)



{




new1->next=temp->next;




temp->next=new1;




new1->next->prev=new1;




new1->prev=temp;



}



else



{




temp=temp->next;



}


}

}

void dele()

{


int no,flag=0;


temp=head;


if(head==NULL)


{



cout<<"\nEmpty";


}


else


{



cout<<"\nEnter data to delete:";



cin>>no;



do



{




if(temp->data==no)




{





if(temp==head&&temp->next==head)





{






head->next=NULL;






head->prev=NULL;






head=NULL;





}





if(temp==head&&temp->next!=head)





{






head=head->next;






temp->next->prev=temp->prev;






temp->prev->next=temp->next;






temp->next=NULL;






temp->prev=NULL;





}





else





{






temp->next->prev=temp->prev;






temp->prev->next=temp->next;






temp->next=NULL;






temp->prev=NULL;





}




cout<<"\nNode is Deleted Successfully\n";




flag=1;




break;




}




else




{





temp=temp->next;




}



}while(temp!=head);



if(flag==0)



{




cout<<"\nNode not Found\n";



}


}

}

void disp()

{


temp=head;


cout<<"\nDouble Linked list elements are\n";


do


{



cout<<"\n";



cout<<temp->data;



temp=temp->next;


}while(temp!=head);

}

ASSIGNMENT NO: 

TITLE: Program for create and traversal of Binary Tree.

SYSTEM: PC with ‘Turbo C’.

INPUT-OUTPUT REQUIREMENTS:

INPUT: Data for nodes

OUTPUT: Result of various operations on Doubly Linked List.

THEORY:

1) Binary Trees

The simplest form of tree is a binary tree. A binary tree consists of

a. node (called the root node) and

b. left and right sub-trees.

Both the sub-trees are themselves binary trees.

You now have a recursively defined data structure. (It is also possible to define a list recursively: can you see how?)


[image: image29]
A Binary Tree

The nodes at the lowest levels of the tree (the ones with no sub-trees) are called leaves.

In an ordered binary tree,

1. The keys of all the nodes in the left sub-tree are less than that of the root,

2. The keys of all the nodes in the right sub-tree are greater than that of the root, 

The left and right sub-trees are themselves ordered binary trees

ALGORITHM:

Create Function:

Step 1: Start.

Step 2: Create new node.

Step 3: Check if memory is allocated or not. If not print “Unable to allocate memory”.

Step 4: Take data from user & store it in to data field. Store “NULL” in right & left child.

Step 5: Check if root is “NULL” if yes then assign root to new node.

Step 6: Otherwise call insert function & pass root & created new node.

Step 7: Ask user whether he wants to continue or not.

Step 8: Stop.

Insert Function:

Step 1: Start.

Step 2: Take choice from user where he want to insert a new node(left/right of root node).

Step 3: If choice is “left”; check left side of root is “NULL” or not. If yes then insert node on left side of root. If not then pass left child of root & insert new node recursively.

Step 4: If choice is “right”; check right side of root is “NULL” or not. If yes then insert node on right side of root.If not then pass right child of root & insert new node recursively.

Step 5: Stop.

Re-preorder Function:

Step 1: Start.

Step 2: Taking argument from function, check if root is “NULL” or not.

Step 3: Print data of root.

Step 4: Pass left side of root as argument to re-preorder.

Step 5: Pass right side of root as argument to re-preorder.

Step 6: If passing arguments are not “NULL”, these steps will execute

recursively.

Step 7: Stop.

Re-inorder Function:

Step 1: Start.

Step 2: Taking argument from function, check if root is “NULL” or not.

Step 3: Pass left side of root as argument to re-inorder.

Step 4: Print data of root.

Step 5: Pass right side of root as argument to re-inorder.

Step 6: If passing arguments are not “NULL”, these steps will execute recursively.

Step 7: Stop.

Re-postorder Function:

Step 1: Start.

Step 2: Taking argument from function, check if root is “NULL” or not.

Step 3: Pass left side of root as argument to re-postorder.

Step 4: Pass right side of root as argument to re-postorder.

Step 5: Print data of root.

Step 6: If passing arguments are not “NULL”, these steps will execute recursively.

Step 7: Stop.

Non-preorder:

Step 1: Start.

Step 2: Create object of class stack.

Step 3: Take root on temporary variable temp.

Step 4: Call push function for stack & pass temp.

Step 5: Check if stack is empty using while loop; if not pop from stack using pop function & check if popped node is “NULL”.

Step 6: If popped node is not “NULL”, then print data & push left & right address of that node.

Step 7: Stop.

Non-inorder:

Step 1: Start.

Step 2: Create object of class stack.

Step 3: Take root on temporary variable temp.

Step 4: Check temp is “NULL” or not using do while loop & also check stack empty condition.

Step 5: If not then inside of do while loop use another while loop for checking temp is “NULL” or not. If not, push temp in to the stack. Increment temp to its left side.

Step 6: If stack is not empty then pop node from stack. And print data of that node. Increment temp to its right side.

Step 7: Stop.

Non-Postorder:

Step 1: Start.

Step 2: Create object of class stack.

Step 3: Take root on temporary variable temp.

Step 4: If temp is not “NULL”, create a new node. Enter the ASCII value of “L” in the data field of new node. Store “NULL” in left & right field of node. Push this node on to stack.

Step 5: Temp points to its left address.

Step 6: Check stack is empty or not. If empty then break. Else pop node from the stack taking data of node; if data of node is having ASCII value for “R” then print data.

Step 7: Otherwise create new node. Enter the ASCII value of “R” in the data field of new node. Store “NULL” in left & right field of node. Push this node on to stack.

Step 8: If stack is not empty go to step 4.

Step 9: Stop.

Display:

Step 1: Start.

Step 2: Check if root is “NULL” or not. If root is “NULL”, print tree not created.

Step 3: Print the choice for recursive or non-recursive traversal.

Step 4: If choice is recursive then print sub-choices as re-preorder, reinorder & re-postorder and take choice from user.

Step 5: If choice is re-preorder then call preorder function & pass root.

Step 6: If choice is re-inorder then call inorder function & pass root.

Step 7: If choice is re-postorder then call postorder function & pass root.

Step 8: If choice is non-recursive then print sub-choices as nonpreorder, non-inorder & non-postorder and take choice from user.

Step 9: If choice is non-preorder then call non-preorder function & pass root.

Step 10: If choice is non-inorder then call non-inorder function & pass root.

Step 11: If choice is non-postorder then call non-postorder function & pass root.

Step 12: Stop.

Main Function:

Step 1: Start.

Step 2: Declare necessary variables.

Step 3: Print the menu as below & take choice from user:

1. Create.

2. Display.

Step 4: If choice is 1, call create function.

Step 5: If choice is 2, call display function.

Step 6: Ask user if he wants to continue or not.

Step 7: If yes then go to step 3.

Step 8: Stop.

PROGRAM:

INPUT/OUTPUT:

MAIN MENU:

1.CREATE

2.DISPLAY

3.EXIT

Enter ur choice:1

Enter data:12

Do you want to insert more(y/n)?:y

Enter data:10

Where do you want to insert:(l/r) of 12?l

Do you want to insert more(y/n)?:y

Enter data:30

Where do you want to insert:(l/r) of 12?r

Do you want to insert more(y/n)?:y

Enter data:9

Where do you want to insert:(l/r) of 12?l

Where do you want to insert:(l/r) of 10?l

Do you want to insert more(y/n)?:y

Enter data:11

Where do you want to insert:(l/r) of 12?l

Where do you want to insert:(l/r) of 10?r

Do you want to insert more(y/n)?:y

Enter data:28

Where do you want to insert:(l/r) of 12?r

Where do you want to insert:(l/r) of 30?l

Do you want to insert more(y/n)?:y

Enter data:52

Where do you want to insert:(l/r) of 12?r

Where do you want to insert:(l/r) of 30?r

Do you want to insert more(y/n)?:n

Do you want to return to main menu(y/n)?:y

MAIN MENU:

1.CREATE

2.DISPLAY

3.EXIT

Enter ur choice:2

SUB-MENU:

1.RE_PREORDER

2.RE_INORDER

3.RE_POSTORDER

4.NON_RE_PREORDER

5.NON_RE_INORDER

6.NON_RE_POSTORDER 

7.EXIT

Enter ur choice:1

12 10 9 11 30 28 52

Do you want to return submenu(y/n)?:y

SUB-MENU:

1.RE_PREORDER

2.RE_INORDER

3.RE_POSTORDER

4.NON_RE_PREORDER

5.NON_RE_INORDER

6.NON_RE_POSTORDER

7.EXIT

Enter ur choice:2

9 10 11 12 28 30 52

Do you want to return submenu(y/n)?:y

SUB-MENU:

1.RE_PREORDER

2.RE_INORDER

3.RE_POSTORDER

4.NON_RE_PREORDER

5.NON_RE_INORDER

6.NON_RE_POSTORDER

7.EXIT

Enter ur choice:3

9 11 10 28 52 30 12

Do you want to return submenu(y/n)?:y

SUB-MENU:

1.RE_PREORDER

2.RE_INORDER

3.RE_POSTORDER

4.NON_RE_PREORDER

5.NON_RE_INORDER

6.NON_RE_POSTORDER

7.EXIT

Enter ur choice:4

12 10 9 11 30 28 52

Do you want to return submenu(y/n)?:y

SUB-MENU:

1.RE_PREORDER

2.RE_INORDER

3.RE_POSTORDER

4.NON_RE_PREORDER

5.NON_RE_INORDER

6.NON_RE_POSTORDER

7.EXIT

Enter ur choice:5

9 10 11 12 28 30 52

Do you want to return submenu(y/n)?:y

SUB-MENU:

1.RE_PREORDER

2.RE_INORDER

3.RE_POSTORDER

4.NON_RE_PREORDER

5.NON_RE_INORDER

6.NON_RE_POSTORDER

7.EXIT

Enter ur choice:6

9 11 10 28 52 30 12

Do you want to return submenu(y/n)?:y

SUB-MENU:

1.RE_PREORDER

2.RE_INORDER

3.RE_POSTORDER

4.NON_RE_PREORDER

5.NON_RE_INORDER

6.NON_RE_POSTORDER

7.EXIT

Enter ur choice:7

ASSIGNMENT NO

TITLE: Implementation of Binary search tree with Create, Insert, Delete, Display operation.

SYSTEM: PC with ‘Turbo C’.

INPUT-OUTPUT REQUIREMENTS:

INPUT: Data for nodes

OUTPUT: Result of various operations on Binary Search Tree.

THEORY:

Definition: BST is binary tree which satisfy the following

Condition

1. Left child of parent is less than that of parent

2. Right child of parent is greater than that of parent

3. Sub-tree of parent is also BST


[image: image30]
In the above figure the order of the value is as follows

c>a>e>b>a


[image: image31]
ALGORITHM:

Create Function:

Step 1: Start.

Step 2: Take data from user & create new node n1.

Step 3: Store data in n1 & make left & right child “NULL”.

Step 4: If root is “NULL” then assign root to n1.

Step 5: Else call insert function & pass root & n1.

Step 6: Stop.

Insert Function:

Step 1: Start.

Step 2: We have new node in passed argument; so check data in temp is less than data in root. If yes then check if Left child of root is “NULL” or not. If yes, store temp in left child otherwise call insert function again & pass left address of node & temp.

Step 3: If data in root is less than data in temp then check if right Child of root is “NULL”. If yes then store temp in right child field of root & if not call insert function again & pass right child address of node & temp.

Step 4: Stop.

Display Function:

Step 1: Start.

Step 2: If root is “NULL” then display tree is not created.

Step 3: Otherwise call inorder function & pass root.

Step 4: Stop.

Inorder Function:

Step 1: Start.

Step 2: Taking root from inorder function, check if it is “NULL” or not.

Step 3: Again call inorder function & pass left child address of node

Step 4: Display data of root.

Step 5: Again call inorder function & pass right child address of node.

Step 6: Stop.

Search Function:

Step 1: Start.

Step 2: Take data from user which he wants to search.

Step 3: Call find function.

Step 4: Store return in temp.

Step 5: If temp is “NULL”, print not found.

Step 6: Otherwise check if it is root. If yes then print found node is root.

Step 7: Else print the node & parent of node.

Step 8: Stop.

Find Function:

Step 1: Start.

Step 2: If root is “NULL”, return “NULL”.

Step 3: Otherwise if data of root is required data return root.

Step 4: If required data is less than data of root then assign root to the left child & call find function again.

Step 5: Else if required data is greater than data of root then assign root to the right child & call find function again.

Step 6: Repeat step 4 & 5 until data is found.

Step 7: Stop.

Delete Function:

Step 1: Start.

Step 2: Take data from user which he wants to delete.

Step 3: Call find function & pass data to be deleted.

Step 4: If value returned by find function is “NULL” then display node not found

Step 5: Otherwise if found node is leaf node then delete that node directly & store “NULL” in respective field of Parent node.

Step 6: Otherwise if found node is other than leaf node then go to parent node of that particular node & store “NULL” in respective field of parent node.(Logical deletion)

Step 7: Display node to be delete & delete that node.(Actual deletion)

Step 8: Stop.

Main Function:

Step 1: Start.

Step 2: Create necessary class objects & declare necessary variables.

Step 3: Print menu as below & take choice from user:

1. Create

2. Display

3. Search

4. Delete

5. Exit

Step 4: If choice is 1, call create function.

Step 5: If choice is 2, call display function.

Step 6: If choice is 3, call search function.

Step 7: If choice is 4, call delete function.

Step 8: If choice is 5, exit from program.

Step 9: Ask user whether he wants to continue or not.

Step 10: If yes then go to step 3.

Step 11: Stop.

PROGRAM:

INPUT/OUTPUT:

MENU:

1.CREATE

2.SEARCH

3.DISPLAY

4.DELETE

5.EXIT

Enter ur choice:1

Enter data:12

Do you want to continue(y/n)?:y

Enter data:10

Do you want to continue(y/n)?:y

Enter data:30

Do you want to continue(y/n)?:y

Enter data:9

Do you want to continue(y/n)?:y

Enter data:11

Do you want to continue(y/n)?:y

Enter data:28

Do you want to continue(y/n)?:y

Enter data:52

Do you want to continue(y/n)?:n

Do you want to continue(y/n)?:y

MENU:

1.CREATE

2.SEARCH

3.DISPLAY

4.DELETE

5.EXIT

Enter ur choice:3

9 10 11 12 28 30 52

Do you want to continue(y/n)?:y

MENU:

1.CREATE

2.SEARCH

3.DISPLAY

4.DELETE

5.EXIT

Enter ur choice:2

Enter data to search:12

12 is root

Do you want to continue(y/n)?:y

MENU:

1.CREATE

2.SEARCH

3.DISPLAY

4.DELETE

5.EXIT

Enter ur choice:2

Enter data to search:28

28 is child of30

Do you want to continue(y/n)?:y

MENU:

1.CREATE

2.SEARCH

3.DISPLAY

4.DELETE

5.EXIT

Enter ur choice:4

Enter data to be deleted:52

Deleted element is:52

Do you want to continue(y/n)?:y

MENU:

1.CREATE

2.SEARCH

3.DISPLAY

4.DELETE

5.EXIT

Enter ur choice:3

9 10 11 12 28 30

Do you want to continue(y/n)?:y

MENU:

1.CREATE

2.SEARCH

3.DISPLAY

4.DELETE

5.EXIT

Enter ur choice:4

Enter data to be deleted:30

Deleted element is: 30

Do you want to continue(y/n)?:y

MENU:

1.CREATE

2.SEARCH

3.DISPLAY

4.DELETE

5.EXIT

Enter ur choice:3

9 10 11 12 28

Do you want to continue(y/n)?:y

MENU:

1.CREATE

2.SEARCH

3.DISPLAY

4.DELETE

5.EXIT

Enter ur choice:4

Enter data to be deleted:10

Deleted element is: 10

Do you want to continue(y/n)?:y

MENU:

1.CREATE

2.SEARCH

3.DISPLAY

4.DELETE

5.EXIT

Enter ur choice:3

9 11 12 28

Do you want to continue(y/n)?:n

[image: image1][image: image32.emf][image: image33.emf][image: image34.emf][image: image35.emf][image: image36.emf][image: image37.emf][image: image38.emf][image: image39.emf][image: image40.emf][image: image41.emf][image: image42.emf][image: image43.emf][image: image44.emf][image: image45.emf][image: image46.emf][image: image47.emf][image: image48.emf][image: image49.emf][image: image50.emf][image: image51.emf][image: image52.emf][image: image53.emf][image: image54.emf][image: image55.emf][image: image56.emf][image: image57.emf][image: image58.emf][image: image59.emf]